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ABSTRACT

Marine Corps Tactical Systems Support Activity (MCTSSA) has put forth a requirement
for a non-proprietary network traffic replay system that is user friendly and can provide both
replay of a network trace file as well as replay based on a statistical model of a network
trace file. This thesis attempts to create such a system and to fulfil the requirements set
forth by MCTSSA. The system performs as much preprocessing of data as possible, to
include loading packet data into a database and creating binary copies of replay packets,
which facilitates performing replays multiple times without repetitive processing work. The
final system proved to accurately reproduce a capture file with a trace-based replay, while
maintaining TCP semantics and the ability to match high volumes of traffic. The major
limitation is the need to potentially sacrifice timing accuracy in order to maintain TCP
semantic integrity. To accommodate different user implementations, the system supports an
option to place the priority on either sequencing or timing, which will guarantee one at the
possible expense of the other. Lastly, the statistical model generated from characteristics
of the original trace proved to accurately model the original capture and provide for a
user-defined replay length. In the end, the MCTSSA requirements were met and further
expansion and enhancements were identified to improve performance and usefulness of the
system.
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CHAPTER 1:

Introduction

Network owners and administrators are always interested in enhancing the usefulness and
maximizing the performance of their networks and they spend a significant amount of time
and money testing products and methodologies aimed at accomplishing these goals. In
order to verify their effectiveness, these products must be tested and evaluated under op-
erational conditions. Accurate and relevant evaluation requires either implementing and
testing these ideas onto the operational network, which is typically impractical or impos-
sible, or creating a test network that accurately emulates the target network. The ability to
appropriately emulate a network relies on accurate representation of network traffic con-
ditions, and if accomplished, removes the need to utilize the operational network itself for
testing. The challenge, therefore, lies in creating this emulation network traffic in an accu-
rate and realistic way. Proprietary hardware solutions do exist, but they tend to be expensive
and non-specific in terms of implementation choices [1]. For many organizations, the cost
is either too high, the product does not conform to testing requirements, or both.

In order to produce as accurate a test environment as practical, the emulation system must
consider the actual network traffic on a given network as well as the hardware constraints.
In order to accomplish this, network traffic must be recorded or monitored and evaluated to
determine common characteristics such as the frequency of packets, the ratio of common
protocols, and the packet payload sizes, among others. Additionally, the system must be
able to recreate events of interest such as congestion.

1.1 Requirement
There is currently a requirement raised by Marine Corps Tactical Systems Support Activity
(MCTSSA) to develop a system to create such a test environment. The capability to ac-
curately emulate and replay network loads must be based on samples of network traffic as
recorded in pcap files, which are a common file format for storing network traffic data in
programs such as Wireshark [2]. The desired use for this capability by MCTSSA is primar-
ily to test network optimization products such as Wide Area Network (WAN) Optimizers
and compression utilities, but also to provide network replay and emulation for unit train-
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ing purposes. MCTSSA does not posses the resources necessary to purchase a proprietary
test system such as PacketExpert by GL Communications, nor do they desire the generic
testing requirements fulfilled by some such systems.

1.2 Purpose
The purpose of this thesis is to develop a system for network emulation and replay that
meets the requirements placed by MCTSSA. The system will utilize recorded network
traffic in the form of a pcap file to provide the data for an trace-based replay capability
as well statistical modelling that will create a network load emulation capability. The pcap
files provided by MCTSSA will be used by the system to create a test environment designed
to meet product evaluation and training needs of the Marine Corps.

1.3 Scope
The system designed during this thesis will provide both a packet-by-packet replay of a
pcap file and a playback based on statistical analysis of a pcap file. The system will be
user friendly, not rely on any proprietary products, and maintain original packet and flow
integrity as well as timing during trace-based replay conditions. Additionally, the charac-
teristics of the original capture file will be modelled in a statistical replay option.

Timing, in the context of this thesis, refers to packet throughput or the number of packets
observed over a specific time interval. the claim that a replay system maintains timing
simply means that the throughput of this replay system can recreate the original throughput
pattern, especially under heavy loads.

This thesis will show that such a system can be developed and that packet sequencing,
accuracy, and timing can be maintained entirely or to a reasonable degree, both in terms
of timing and maintaining protocol semantics. Furthermore, the designed system will be
provided to MCTSSA fully configured and ready for use, per the specified requirements.

1.4 Thesis Structure
Chapter two of this thesis will discuss the MCTSSA requirement for a network traffic
replay system as well as some of the previous work completed in the area of network traffic
replay. Chapter three will cover, in detail, the methodology for designing the replay system,

2



followed by the implementation-specific details in Chapter four. Following these design
and implementation specifics, the test environment and methodology will be explained
(chapter five) and the validation from this testing will be presented in chapter six, along
with more formal validation for timing requirements and limitations of the system. Finally,
chapter seven will discuss future work on the replay system as well as a summary of the
relevant findings.
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CHAPTER 2:

Background

2.1 MCTSSA
MCTSSA “provides test and evaluation, engineering, and deployed technical support for
USMC and joint service command, control, computer, and communications (C4) systems
throughout all acquisition life-cycle phases” [3]. Their responsibilities include testing new
devices, services, and procedures that the Marine Corps has or is interested in acquiring.
This includes network optimization products such as Wide Area Network (WAN) optimiz-
ers and products for adjusting video streaming quality to accommodate real-time network
bandwidth loads. Additionally, MCTSSA provides training support for Marine Corps units
where they repair and evaluate the effectiveness and efficiency of C4 systems.

Currently, when testing network optimization tools, MCTSSA uses a generic network traf-
fic generation tool to emulate a C4 environment. Although this method does provide feed-
back on the usefulness of the optimization tool, MCTSSA requires the ability to evaluate
these tools in true Marine Corps network environments in order to obtain non-generic re-
sults. Furthermore, the Marine Corps maintains C4 equipment at all levels of command
where the size and scope of the systems varies significantly between these levels. Due to
the significant differences between these systems, generic network testing is not guaran-
teed to produce accurate results and certainly is not guaranteed to differentiate those results
between command levels.

As an example, a WAN optimizer might prove to be very useful at a higher level of com-
mand, which utilizes a much larger network, but not provide enough of an improvement at
a lower level to warrant the investment. With the ability to test this WAN optimizer at each
level, the usefulness of the device at each level can be accurately determined, leading to
better investment and spending decisions.

MCTSSA already maintains a variety of network capture files from these various Marine
Corps commands utilizing various C4 equipment as well as systems to emulate physical
network characteristics. What they currently lack is a software tool to replay these capture
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files in their emulated network test environment. Unfortunately, they lack the time and
resources to create or fund the creation of this tool so they continue to work with generic
network traffic generators and estimations of performance data.

2.2 Required Characteristics
In order to properly meet the requirements placed by MCTSSA, the proposed system re-
quires certain characteristics with regards to functionality and behavior. These include the
ability to replay a captured traffic file packet-by-packet as well as the ability to generate
and play a statistical model of the captured traffic, all with accurate timing and sequencing
of the packets. This section will discuss these important aspects and the next section will
discuss how these characteristics are/are not met by previous work.

2.2.1 Trace-based Replay
Trace-based replay, in this context, means that the traffic sent over the network during
replay is identical to the traffic contained in the capture file, with few exceptions. The
packets themselves must be identical from the network layer up. The physical and link
layer information can be modified to meet the requirements of the test environment. For
the designed purposes of the system, changing this information will have no effect on the
usefulness of the replay.

The ability to reproduce the exact contents of the original packets is vital to the ability
to properly test network optimization and analysis tools, such as WAN optimizers. These
tools examine various portions of the packet data, to include the options and payload, while
performing their tasks. Without perfectly recreating these packets, the performance and
usefulness of these tools is unpredictable.

2.2.2 Statistical Replay
Statistical replay in this context means that the original captured traffic is analyzed for
patterns such as overall packet frequency, types and recurrence of transport layer protocols,
timing between packets, timing between flows, and number and length of flows, among
others. Once this statistical information is gathered, the system generates a new traffic
pattern that mimics these characteristics of the original capture, but can be repeated for any
desired amount of time.
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2.2.3 Accurate Sequencing
Accurate sequencing refers to the ordering of packets during playback. By maintaining
the order of packets, not only is the ordering within each single traffic flow maintained,
but the ordering between different traffic flows is also maintained. The ability to retain
the relative order of packets is vital for achieving trace-based replay (accurately recreating
the recorded network traffic load). That being said, the ordering of packets with respect
to each other may still potentially change from the original, but only in such a way as to
retain the integrity of TCP flow semantics, in order to provide accurate stateful playback.
Additionally, for realistic network emulation in a statistical replay environment, the order
of packets must be maintained in order for the traffic patterns to not be nonsensical. An
example of nonsensical replay would be sending out of order TCP packets where the first
data packet is sent before the 3-way handshake has begun. For the same reasons offered
for inaccurate packets, nonsensical packet ordering would lead to unpredictable behavior
by network optimization and analysis tools.

2.2.4 Accurate Timing
In order to meet the trace-based replay requirements as well as maintain the timing of
the calculated statistical model, the system must be able to meet the timing requirements
specified for the replay, to a reasonable degree. This simply means that during traffic
replay, if the timestamps of packet arrivals and departures were to be observed, they would
match the timestamps of packet arrivals and departures in the original trace. This allows
for accurate recreation of the packet throughput of the original trace. Without the ability
to accurately mimic these timings, and thus the throughput, neither replay models could be
properly achieved.

2.3 Previous Work
2.3.1 Previous Thesis
The MCTSSA requirement for a traffic replay system has already spawned a thesis response
at Naval Postgraduate School. Although the replay system was not designed in its entirety,
A Tool For Stateful Replay by Thomas Le Vier [4] laid the groundwork for this thesis to pro-
vide a complete product. The previous work developed several of the key implementation
concepts that include the use of a database to store the packet data, the use of configuration
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files for directing the replay action, the choice to leverage packet manipulation language
libraries, and the decision to divide the system into functional parts. All of these design
decisions will be discussed in detail in Chapter 3. Le Vier managed to accurately organize
the captured network traffic into a database, pull a single TCP flow out of the database, and
accurately replay this TCP flow between two nodes. Although this was a good start in the
development of this system, it was far from reaching the replay requirements set forth by
MCTSSA.

2.3.2 TCPivo
TCPivo is a traffic replay tool that was developed in 2003 and discussed in the article
TCPivo: A High-Performance Packet Replay Engine. Although this product shares several
design features to this system, there are key components from MCTSSAs requirements that
are missing.

TCPivo is designed to produce trace-based replay from a capture file. Instead of pre-
processing the file data, as this system does, TCPivo reads the packets from the file in
real-time, relying on pre-fetching techniques to maintain timing accuracy (requiring OS
kernel modification). The capture file is read and parsed for every run of the replay, with
no ability to customize the playback. For example, retransmissions in the capture file are
not removed by the replay process. Additionally, there is no support for statistical emu-
lation based on the capture file. A TCPivo user would have to look to other products for
this.

Similar to this system, TCPivo does use commodity hardware and general use software
such as Linux, but requires kernel patches and does not provide a stand-alone virtual device
with these patches pre-configured. Although all software and code is made available to
users, configuration and kernel patches must also be accomplished by the user. This does
not meet the MCTSSA requirement for a plug-and-play system.

The single user option provided by TCPivo is to substitute actual payload data with null
padding. The purpose for this is to increase the speed at which the packets can be replayed,
but, as the authors note, null padded payload is not practical for many networking tests.

Finally, there is no mention in the TCPivo article about what protocols are or are not re-
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played, such as UDP packets. Accurate replay of an organization’s network utilization
would require UDP packets to also be replayed, while at the same time eliminating some
of the low-level messages such as ARP requests and responses.

2.3.3 On Interactive Internet Traffic Replay (TCPopera)
In 2005, Seung-Sun Hong and S. Felix Wu wrote a paper discussing another network traffic
replay tool called TCPopera [5]. Like this system and TCPivo, TCPopera uses captured
network traffic as the basis for traffic replay. However, TCPopera does not provide trace-
based replay of this captured data. Instead, it develops analytics from the captured data and
creates a statistical model based on this data, exactly what this system provides as one of
the replay options.

With a primary focus on network security and intrusion prevention systems (IPS) testing,
TCPOpera is more concerned with modifying the original trace to meet certain testing
desires while re-creating all aspects of TCP control. The main goal of this system is to
perform trace-based replay of recorded traffic for injection into test and training networks,
with a secondary option for statistical based playback. TCPopera is designed with the
narrow primary goal of providing a test-bed for network security specific devices.

TCPopera’s focus on flow structure allows for very accurate intra-flow sequencing. The
system uses a single thread for managing each flow. What this does not provide for is inter-
flow sequencing, which is also important when providing trace-based replay. Although
TCPopera uses a very similar two-phase approach of pre-processing followed by replay,
the replay itself is not based entirely on ordering and timing of the original trace. Instead,
TCPopera uses a single control node and control messages passed out-of-band between the
nodes to facilitate replay parameters of a statistically similar traffic pattern.

Although TCPopera includes UDP and ICMP traffic, its primary focus is on TCP traffic
and the results and validation of the tool focus almost entirely on TCP measurements.
The authors also claim that scalability is one of the design goals, but by utilizing out-of-
band control channels, TCPopera becomes limited by the complexity of control channel
connections as the scale increases.

Other shortfalls were identified by the authors themselves. TCPopera implements TCP
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flow reconstruction in such a way that some TCP connections remain open for much longer
periods than desired or required. Since these connections occupy a larger portion of a finite
replay time, less time remains for follow-on connections, leading to those connections or
flows being cut short. For IDS or other network testing devices, missing packets in TCP
flows may mean that the tool will be inaccurate or unusable.

It was unclear how the authors of TCPopera validated correct TCP semantics. Not only
were the semantics not defined or described, they were claimed as valid without explanation
as to how this validity was determined. This leads to uncertainty about their claim. Another
poorly explained area is the concept of a flow. A TCP flow was never formally defined.
The authors briefly describe a flow as both packets sequences between two host as well as
containing multiple TCP connections. Given that multiple connections will not necessarily
be between the same two hosts, the description leaves the reader with an ambiguous, at
best, description of a TCP flow.

2.3.4 Summary of Previous Work
Although the systems mentioned here have very similar goals and share several common
design features with this system, no individual project provides all necessary features for
meeting MCTSSA’s replay requirements. The original thesis only replays a single TCP
flow, TCPivo does not provide statistical playback, and TCPopera does not provide trace-
based replay. The system requested by MCTSSA requires a focus on recreating a realistic
representation of an organization’s traffic patterns, and the ability to provide trace-based
replay of captured traffic as well as a statistical replay of the same captured traffic. See
Table 2.1 for a summary of the comparison points.

Table 2.1: Previous Work Comparison

Feature Previous Thesis TCPivo TCPopera This Thesis
Trace-Based Replay No Yes No Yes
Statistical Replay No No Yes Yes
Accurate Sequencing Yes Yes Yes Yes
Accurate Timing No Yes No Yes
Meets MCTSSA Req’s No No No Yes

10



CHAPTER 3:

Methodology

The design decisions made in this thesis account for the majority of the research and effort.
As is common within the field of Computer Science, there are many methods for solving
any particular problem, let alone a series of problems. The design of this system is no
exception. This chapter will discuss the rational behind the major as well as some of the
minor design choices in the project. The areas of discussion will focus on design choices
that are unusual, critical to the required operation, or presented challenges to the project.

Due to the fact that this project is done in an academic environment and designed for use by
MCTSSA, all of the source code will be open source and provided to any interested parties
under the General Public use Licence. Additionally, consideration will be given to posting
the source code online for public access.

3.1 Abstract View of Source Network
The network used for the original capture of traffic can be abstracted to a very simple design
of two nodes sharing a single link. Behind these two nodes could be any number of hosts,
all of which send traffic to each other through this single link. In a USMC-specific context,
the nodes connect multiple Marine Corps network enclaves together as well as potentially
connecting to external networks such as the Internet. See Figure 3.1 for an illustration of
this.

As seen in the illustration, there is a single point of capture located at one of the nodes. This
node will be referred to as the internal node. The node farther away from the capture point
will be referred to as the external node. For the purposes of correctness during the trace-
based replay, it is assumed that the capture takes place immediately at the internal node and
not at some intermediate point between the internal and external nodes. The system would
need to know the latency from each node to the capture point, if that were the case. The
current design uses latency calculations on the assumption that the traffic was recorded at
one of the nodes and would be improperly implemented otherwise.
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Figure 3.1: Two Node Network Example

Figure 3.2 shows the functional design elements for each node. Each functional element
will be discussed in greater detail throughout the following sections.

Figure 3.2: Replay System Functional Diagram
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In contrast to the functional design details, the top-level design of the replay system, as
shown in Figure 3.3, consists of two nodes connected via the emulated network. The
replayed network packets are sent between the two nodes but do not get forwarded in on to
any external network or enclaves. During replay testing the traffic is recaptured a the node
corresponding to the original internal node and this recapture can then be compared to the
original capture.

Figure 3.3: Top-Level Design

3.2 The Two Part Process
Similar to the first thesis, A Tool For Stateful Replay [4], the overall system design is
divided into two processes or segments. The decision was made to complete as much of the
processing work up front as feasible. This provides two main positive results; to minimize
the workload during the time-critical traffic replay and to allow for multiple replay sessions
to be conducted without unnecessary repetition of the initialization work. To account for
scalability, it was necessary to minimize the workload during the actual replay, due to the
potentially very high playback speed and the desire for as precise timing as possible. This
initialization work refers specifically to the gathering and processing of all the relevant
information from the pcap file. If the user desires to conduct replay of the same capture
file multiple times in a row, reprocessing the recorded data would simply be redundant.
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Once again, for scalability reasons, removing redundancy significantly increases the overall
performance.

3.3 The Process – Segment 1
All reasonable pre-processing is conducted during the first segment of the system design.
This includes reading every line of the pcap file, populating and organizing the database
with all of the packet information, gathering and calculating the statistical data, and creating
the reference files that will be used to run the traffic replay. Each of these subroutines is
accomplished via separate programs, one per task. The order that these tasks are completed
is very important to avoid errors and erroneous data. If a pcap file was entered into the
database without erasing all previous data then the statistical data and playback would
incorporate both sets of data. The unpredictability and inaccuracy of such data was not
investigated in this project. Proper sequencing monitoring is incorporated into the user
interface in order to help prevent this undesirable behavior.

3.3.1 Segment 1 Structure
As mentioned previously, Segment 1 was divided up into three separate programs. The first
program, DBCreate, is designed to ensure the correct structure of the database. DBCreate

creates or overwrites all elements of the database schema and erases data already populated
into the schema. For details about the schema see Section 3.3.2.

The second program, populateDB, reads a specified pcap file, line by line, and places all
relevant packet data into the database schema and marks all retransmission packets. Once
complete with populating the database, populateDB inspects the populated entries, groups
packets into flows, and generates flow data for easy reference later. Finally, the program
creates reference files for use in trace-based replay during Segment 2 (Section 3.4).

The third and final program in Segment 1 is CreateFiles. CreateFiles reads the flow and
packet data from the database, performs the statistical analysis and creates the reference
files for statistical replay. For specifics about these reference files see Section 3.3.3.

3.3.2 Database Structure
The program DBCreate simply creates the required database or, if it already exists, ensures
the integrity of the schema and deletes any data that has already been populated to the
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database using simple “drop table” commands. The reasoning behind not combining the
database management with the database population is to provide the user with the flexibility
to erase the database without also re-populating it with new data. With scalability in mind,
the pcap files have the potential to be very large, therefore it is beneficial to include an easy
method of removing the data from the database without having to replace it with new data.
Erasing the database does not remove any of the reference files that are created by the other
programs.

Following the creation of an empty database schema, the user will populate it using the
populateDB program. Utilizing the libcrafter library, this program reads the pcap file one
packet at a time and parses portions of it before inserting specific packet fields into the
database, one field per column. To see which packet fields are stored in the database see
Figure 3.4.

Along with insertion, populateDB organizes the packet data by Open Systems Interconnec-
tion model (OSI) layer, links each packet with those in the same flow to create flow groups,
and assigns a unique flow number to each flow group. Along with the packet fields, the
grouping of the data in the database is used for determining statistical analysis of the pcap
traffic.

Prior to organizing the flow groups, populateDB scans the packets in order to identify
retransmissions. Retransmissions are identified in TCP packets through matching socket
pairs and sequence numbers. The replay system is designed to mimic actual network traffic.
Retransmissions, although part of the original capture, are typically a result of network
errors or network limitations. In a scenario where the user does not wish to mimic a specific
network environment, the retransmissions are removed (via user option). In a different
scenario, such as replaying malicious traffic, retransmissions would be desired and the user
can choose to retain them. Furthermore, if the user desires replay under specific bandwidth
or network constraints, then those limitations are required to be implemented external to
this system.

The packets that are used to form flow groups are identified by matching IP addresses,
port numbers, and protocol type (the 5-tuple) for both the sending and receiving nodes
(the socket pair). Most IP flows involves a client-server relationship where the client port
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is a fairly unique, high value [6]. Due to this relative uniqueness of this ephemeral port
selection, the likelihood of two flows between the same two IP addresses having the same
socket pair is not very likely. Although it is still possible that a particular socket pair may
exist for separate flows, this would most likely be a small number and not adversely affect
the system performance.

In order to simplify the database schema, each packet of the same OSI layer 3 protocol is
stored in a single table. Due to only two prominent layer 3 protocols, IPv4 or IPv6, there
are only two tables storing actual packet data. The reason for this division is due to the
fact that IPv6 support is initially not included in this project, but instead is designed for
future work. Removing the IPv6 packets from the IPv4 table reduces the workload when
searching the table. The complete structure of the database schema, to include packet tables
and flow tables, is shown in Figure 3.4.

Lastly, populateDB creates the reference files used in Segment 2 3.4 for trace-based replay.
In order to maintain packet integrity and reduce processing time, each packet is written
to a reference file and saved in a specified folder, with a unique name that matches the
packet number listed in the database. Section 3.3.3 explains the specifics of the reference
file creation.

3.3.3 The Use of Reference Files
Following the design of the previous thesis [4] once again, this system is designed to make
use of reference files. More specifically, text files and binary files are used as the means
of communication between Segment 1 and Segment 2. These files supply all of the packet
data that will be used during replay.

The Binary Files
After populating the database, populateDB creates binary files that contain the raw packet
data for each packet in the capture file. Each packet in the database includes a unique
packet number and the corresponding binary reference file contains this unique number in
its naming scheme. The trace-based replay files are stored in a folder named “replayfiles”
and the naming scheme is “bin01.bin” for packet number “1”.

Initially, the packet data was stored in the database, but not only did this make the database
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Figure 3.4: Database Schema

I/O slow and complicated, but it also required detailed packet parsing and introduced the
potential for data misinterpretation at several points in the process. By copying the raw
packet data into a binary file as each packet is read, not only is the process less complicated
and faster, but it ensures accuracy of the data in relation to the original data. As an example
of this, TCP options have been deployed on the Internet without specific IANA assignment,
leading to unpredictability in order and/or format [7]. This unpredictability makes parsing
and recreating TCP options very difficult. Copying raw packet data instead of parsing TCP
options provides the ability to bypass this difficulty while maintaining packet integrity.

CreateFiles performs the statistical analysis of the captured data as described in Section
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3.3.4 then creates packets to be replayed during the statistical playback. Once each packet
is created, the raw data is extracted and copied into a reference file in the same manner as
the trace-based replay packets. The naming scheme for the statistical replay is the same as
the trace-based replay, but the statistical replay files are placed into the folder “statfiles”.

The Configuration File
The program CreateFiles reads the TCP then UDP packet fields from the database and
creates a configuration file with one packet listed per line where each line contains the
necessary packet fields, each separated by a comma for easy parsing. These lines are se-
quenced in time order, allowing for line-by-line playback directly from the configuration
file. The configuration file is named “ConfigFile.txt” and is stored in the folder “config-
files”. Due to the potential for large, arbitrary timestamps within the packets, the time of
the first packet is subtracted from all other packets so that the listed timestamps begin at
or close to zero. This simplifies the replay operation, where this conversion would have to
have been completed in real time.

As will be discussed in Section 3.4 the single configuration file is used to direct the actions
of each participating node. The layout of the configuration files is depicted in Figure 3.5.

Figure 3.5: Con�guration File Format

3.3.4 Statistical Analysis And Modelling
In order to generate an accurate and useful statistical model or the provided network trace,
this system uses a hierarchical approach to analyzing and organizing the original trace data.
This data is then used to generate a new collection of packets, along with a corresponding
configuration file, that can be replayed for a user-defined length of time.

The hierarchical model, as shown in Figure 3.6, begins with the raw captured flows, then
proceeds to divide the list of flows into further detailed groups. The flows are grouped by
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transport protocol and common port number. The common port number can be present on
either end of the flow and if both ends of the flow contain common port number, then the
flow is placed in the group corresponding to the first common port encountered during flow
parsing. See Table 3.1 for a list of the common ports that would be used for creating flow
groups. The list of ports is far from comprehensive but provides a moderate example for
implementation. Any flows not containing one of the common ports can be placed into an
“other” flow group.

Figure 3.6: Statistical Hierarchical Model

Following division of the flows into flow groups, statistics are pulled from each flow within
a group and averaged over the entire group (See Figure 3.6). Now that the statistical data
for each flow group has been collected and calculated, the data is passed to a Flow Gener-
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Table 3.1: Sample Common Ports Used for Flow Groups

Port Description
20 FTP
22 SSH
23 Telnet
25 SMTP
53 DNS
80 HTTP
443 HTTPS
465 SMTPS

ator. The Flow Generator is simply program code that creates the appropriate packets and
configuration data for use in the configuration and binary files.

Castro et al show that different network traffic types each have their own unique distribu-
tions in terms of packet size [8]. In addition to this, different traffic types contain other
unique characteristics. For example, an HTTP session typically contains large data packet
sent in one direction and small acknowledgement packets sent in the opposite direction. In
contrast to this, VOIP sessions contain large data packets that travel in both direction.

These unique characteristics need to be accounted for in order to properly model network
traffic. For this reason, the system modelling is designed to use traffic type templates for
common traffic types. These templates will be used by the Flow Generator to create realistic
and statistically relevant traffic flows. Like the common port numbers, these templates are
not all inclusive but can be expanded as required by the implementation.

At Flow Generation completion, a configuration file as well as the corresponding packet
binary files are created, just as they are in non-statistical replay. These new files reflect
the playback parameters decided on in the statistical analysis. Since the replay system is
able to use the same types of files and the same formats within those files, multi-resolution
playback is achieved simply by creating these files with different data. In this case, the
statistical replay data. It then becomes transparent to the replay engine whether or not the
replay is trace-based or statistical and no additional overhead is added to the replay process.
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3.4 The Process – Segment 2
Segment 2 of the system is where the actual traffic replay takes place. Although this replay
cannot be conducted without first completing Segment 1, it can be completed as many
times as desired on the same data set without having to re-run Segment 1. This section will
discuss the major design and implementation choices for Segment 2.

3.4.1 Threading Considerations
Initial drafts of the design called for a single thread for each flow within the playback.
While this facilitated proper intra-flow sequencing it did not allow for inter-flow sequenc-
ing. Essentially, each flow would replay in order but the order of the flows themselves
could not be guaranteed. Thus the design was simplified to only two threads; one for send-
ing packets and one for receiving packets. By implementing such a simple algorithm, the
order of the packet capture can be maintained, providing both proper intra-flow and proper
inter-flow sequencing.

Thread Structure
The design uses a single thread for building packets, a single thread for sending packets,
and another for receiving packets. The receiving thread simply acts as a “sniffer” that
listens for packet arrival on the specified network interface. The main source for the sniffer
is the libcrafter documentation [9]. Once a packet is received, the sniffer places a copy of
it into a queue. See Section 3.4.2 for details about the queue.

The ability to place limitations on the packets that the sniffer acts on is vital to proper
operation. The sniffing methods of libcrafter allow for this by implementing a filter string
in TCPDUMP format [10]. The filter used for this system is:

" t c p o r udp and inbound "

Without this filter, the sniffer would detect and low level requests submitted by the OS as
well as each of the sent messages.

The receive thread has the capability of examining the received packet for certain charac-
teristics but including this functionality during playback will most likely have a negative
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impact on performance. The capability does exist, though, for debugging and testing pur-
poses.

The send thread handles creating the packet to be sent from the data contained in the con-
figuration file as well as any associated binary file. Once the packet is created, the send
thread ensures the proper conditions are met before sending the newly created packet over
the wire. This process is discussed in greater detail later in this Section.

The packet building thread is designed to remove work from the time sensitive sending
thread. This building thread reads the configuration file to determine the order of packets,
then buildings one packet at a time, in order, by reading the corresponding binary file and
placing the newly created packet into a FIFO queue.

Life Of The Threads
The first thread created is the packet building thread. The reasoning behind this is that
the packet building cannot happen late, but can happen as early as possible to ensure that
packets are available for the sending thread.

The receive thread is then created by the main thread after all initial global configuration
has been completed. The receive thread is set to listen on the main Ethernet interface (eth0),
which includes any virtual interfaces that may exist on the device.

Following the creation of the receive thread, the main program thread then acts as the send
thread. This send thread begins reading the configuration file and examines the file one line
at a time to determines if the current packet is to be sent or received by the local node. This
is determined by examining the MAC addresses listed in the packet line. If the packet is
to be received then the thread checks the queue that holds the received packets. If a packet
is there, the send thread then moves on to the next line, which may be another packet to
be received or one to be sent. If the current packet being examined is one to be sent, the
send thread creates the packet and sends it at the appropriate time. The timing details are
discussed in depth in Section 3.4.3.

This process repeats itself until all lines in the configuration file have been read, at which
point the receive thread is terminated and the program exits. In short, one thread receives
packets and places them into a queue while the other thread follows the configuration file
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line by line, sending packets or popping them from the queue as dictated by the file.

3.4.2 The Queue
In order for the send and receive threads to communicate about which packets have been
received, a first-in first-out (FIFO) queue is used to store all received packets. Each packet
received by the sniffer gets pushed onto the queue and each time the configuration file
specifies a packet is to be received before progressing, a packet gets popped from the queue.

In order to maximize efficiency, retain accuracy, and limit unused CPU cycles in a multi-
threaded environment, a custom, light-weight queue class was implemented that contained
only the required features and as little use of thread locks as possible. Due to the slow
performance of locks, they were only included in the queue class on shared data structure
access. Access to the queue not susceptible to multi-threading inconsistencies is performed
without locks. This custom queue class was originally created by Justin Rohrer and is used
here with only slight changes.

3.4.3 Timing Considerations and Latency
Accurate timing is vital to the successful operation of this system. Since this system is
attempting to replay traffic that was viewed from only a single location, the goal is for
the traffic crossing that same point in the replay network to match as closely as possible.
In order to facilitate this capability, several factors were taken into consideration when
the system was designed. The configuration file located at the internal node servers as
the matching file for the original capture. This internal node sends and expects to receive
packets in the order and timing of the original capture. If the external node were to use the
same timing while ignoring network latency then it would send packets later than necessary
and receive packets later than expected. This would cause a lot of excess delay in the replay
and would lead to the inability to match the timing of the original trace. See Figure 3.7 for
an illustration of this problem.

The external node, therefore must account for all of the test network latency. The config-
uration file on this external node uses the user-defined network latency to adjust the times
and reorder the packet sequencing of the playback configuration file. This facilitates the
accuracy of playback at the internal node, which represents the point of original capture.
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Figure 3.7: Playback Without Latency Factored In

This timing adjustment and configuration file reordering is completed by the external node
prior to the start of playback so as not to hinder system performance.

Lead Time
For packets that get sent from a node, the main thread creates these packets as early as
feasible in order facilitate being sent at the exact time period listed in the configuration file.
The timing used both in the pcap files and from the system is recorded to the microsecond
level. Any timing differences less than one microsecond are not recorded or differentiated.
If two or more packets in the original pcap file were recorded with the same timestamp,
they will be replayed in the order recorded without any wait. That being said, there will be
some delay due to the processing overhead of reading the configuration file and creating
the packet.

Locks and Process Priority
It is tested and documented that accuracy of wake times from wait and sleep locks cannot
be guaranteed [1]. Although a thread may be put to sleep for a set number of milliseconds,
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the lock mechanism cannot guarantee that the thread will wake up exactly when this time is
up, as the system resources may be dedicated to other processes. Since the system requires
as much time precision as possible, locks are not used to implement wait period based on
time. Instead, the custom queue class uses a wait and notify system when the sending
thread is waiting for a packet to arrive. If the queue is empty, the sending thread waits on
a mutex, then when a packet arrives, the receiving thread notifies the sending thread and it
goes back to work.

In order to maximize the accuracy of this cycle, both the sending and receiving threads are
run at the highest real-time priority allowed by the operating system. This minimizes the
potential interruption by other processes during the wait-notify cycle by removing resource
sharing with lower priority processes.

3.4.4 Lost and Malformed Packets
This system is designed for use in test environments that have a low probability of packet
loss or packet corruption. This lack of loss or corruption cannot be guaranteed, however, so
measures were implemented to accommodate lost or malformed packets. When malformed
packets are sent to a node, the sniffer, more times than not will not record them as being
received. Because of this limitation, malformed packets need to be treated the same as
missing packets with regards to program flow and continuation.

The simple solution for this potential problem was to implement a timeout for each wait
period. If the send thread is waiting to receive a packet and it is lost or malformed, the send
thread will only wait a specified amount of time before skipping the packet and moving
on. In the designed scenario where playback consists of thousands of packets, skipping
a few lost or malformed in a test environment will have minimal impact and will allow
the majority of the replay to maintain sequence and timing accuracy. For testing devices
like intrusion prevention systems, however, if the lost or malformed packets are part of key
intrusion flows, this may provide incorrect results.

During replay, the number of skipped packets will be tracked and at the end of the replay,
the program will display the number of missed packets for user information purposes. The
system will be unable to determine the difference between a lost packet and a malformed
packet so only a single record of skipped packets will be tallied and displayed to the user.
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3.4.5 Port Numbers, IP Addresses
Maintaining the IP addresses and port numbers from the original network capture is vital
under certain testing environments, such as WAN testing. Since most capture files will
contain traffic between many IP addresses to and from many port numbers, a method was
needed for maintaining these various addresses and ports while still sending traffic back
and forth between the two nodes. Since each network node is being emulated by actual
hosts, he design needed to work around the IP address and port requirement of the typical
host sockets. As mentioned is Section 4.2, this was accomplished through the use of raw
sockets. The use of raw sockets meant that the ip addresses and port number could be
manually supplied, and thus retain the original values.

As can be seen in Figure 3.1, each router has many computers connected to it, forwarding
traffic through it to the computers connected to the other router. Since each node in this
test system is emulating one of these router-like devices, each node must emulate all of
the computers in the network attached to it. Utilizing raw sockets and manually setting IP
addresses and port numbers allows for this. The main reason this system can take advantage
of this design is because the packets are not handled by software on the nodes, other than
the sniffer, thus making port numbers obsolete. Additionally, since all traffic is being sent
from a single host to another single host, the only required addresses to accomplish this are
MAC addresses. This allows for each packet to have any IP address and still reach the next
host. If the test environment requires routing to be performed between the two test hosts,
then further development will be required.

3.4.6 User Configuration Choices
Multiple configuration options are available to the user of the system. Many of these op-
tions have been discussed in preceding sections, but the complete list of user configurable
options are listed below along with the sections they are discussed.

1. Statistical replay or trace-based replay (Section 3.3.4).

2. Start and Stop times: The user is given the option to choose when to begin and when
to end the emulation. If trace-based replay is chosen then the emulation will end at the
stop time or when all packets have been sent, whichever occurs first. If statistical replay is
chosen, the emulation will only end at the user supplied stop time.
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3.5 The Deliverable
The final product delivered to MCTSSA was required to be complete and to meet certain
criteria. Although no specific timing or accuracy goals were set, usability goals were.

MCTSSAs first listed requirements was for the system to be user friendly. All though the
technical knowledge of the target users is high, MCTSSA desired the system be easy to set
up, configure, and use. This is the primary reason for including a graphical user interface
and simple instructions.

The next requirement placed by MCTSSA was for the system to be “plug-and-play” which
means they want the setup and configuration of the system to be as simple fast as possible.
Due to the many parts of this system, to include a configured database, four individual
programs, as well as a specific operating system, the decision was made to design the
system into a virtual machine.

This virtual machine, with all required software pre-installed and pre-configured, is the
deliverable product. By providing the virtual machine, users will simply need to install the
machine onto any hypervisor or virtual machine emulator to begin using the system.

3.5.1 The Virtual Machine
The virtual machine comes pre-packaged with all necessary software installed and precon-
figured. Additionally, all software and libraries included in the virtual machine is open-
source or releasable under the General Public License [11].

The virtual machine is based on the Linux distribution Ubuntu 14.04 LTS. Ubuntu is one of
the most popular and most supported Linux distributions available. Additionally, version
14.04 is the latest version so the operating system within the virtual machine should be
relevant for several years before needing updating.

The software requirements for this system, other than the operating system, include a com-
plete MySQL database, C++ developer tools and the libraries utilized in the development
of the system (Boost and Libcrafter), and Wireshark for analyzing network traffic.

All operating system and software configuration has been completed on the virtual ma-
chine, requiring no pre-configuration by the user beyond installing the virtual machine.
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This pre-configuration includes user accounts and permission settings, database configura-
tion, C++ developer tools, and operating system configurations.

In order to enhance performance and the replay system, the operating system was pre-
configured to run in a much more minimal state than it installs in. This was accomplished
by uninstalling and disabling software not necessary for system operation. Additionally,
resource intensive features such as visual window transitions were also disabled. The end
result is a more efficient version of Ubuntu 14.04 while still retaining the required features
and usability.
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CHAPTER 4:

Implementation

This chapter discusses the important details of implementing the methodologies discussed
in Chapter 3. Most of these details are not vital to understanding how the system accom-
plishes its given tasks but they are important for anyone that desires to expand or modify the
design. This chapter will discuss the programming languages and libraries, any additional
software requirements, as well as the limitations of the system.

4.1 Language Choice
Building on the previous thesis [4], this project initially implemented Python 2.7 for pcap
file inspection, database management population, and file creation. The main reason to
utilize Python 2.7 was to use the existing deep packet inspection library DPKT [12]. Other
packet inspection libraries exist but the decision to leverage off of the work already com-
pleted outweighed the potential benefits of other languages. Another consideration when
choosing to utilize Python is the efficiency of an interpreted language versus a compiled
language. Since Python is only used for Segment 1, performance is not a vital issue since
this segment only performs non time critical pre-processing.

In contrast with using Python 2.7 for Segment 1, C++ was chosen for Segment 2 due
almost entirely to performance considerations. Segment 2 desires highly accurate timing
which requires the performance that may only be achieved through a compiled language.
Not only does Python 2.7 contain limitations on true multi-threading capability [13], it also
does not provide for scalability due to the performance difference between compiled and
interpreted languages [14]. The C++ implementation relied on the BOOST [15] libraries
for both thread and timing support, as well as the libcrafter [9] library for reading, creating,
and sending packets.

Once work on Segment 2 began, it quickly became apparent that switching back and forth
between the C++ code in Segment 2 and the python code in Segment 1 wasted a lot of time
since the periods in between the switches were large enough that the familiarity with the
language needed refreshing. Additionally, it was discovered that the Python DPKT library
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did not support all of the packet details required from trace-based replay. For these two
reasons, Segment 1 was re-written in C++, utilizing the libcrafter library.

4.2 Library Usage
4.2.1 C++ Boost Thread Library
The Boost [15] libraries were chosen for threading implementation mainly due to their
maturity and the availability of documentation and support. The Boost thread library also
includes mature support structures such as thread-safe container, MUTEXs, and locks.

4.2.2 C++ Crafter Library
The Crafter library (libcrafter) is utilized for creating, sending, and receiving packets [9].
The library has built-in support for creating sockets but it has limitations. Utilizing this
feature would restrict the packets to higher layers only, and the system requires packet
construction from the Ethernet layer up. In order to maintain the integrity of the original
packet data and to manually direct the MAC address of the source and destination nodes,
raw sockets are manually created and the Crafter libraries sent and received through these
sockets.

4.3 Database Software
The system was originally designed to use the relational database provided by the Ora-
cle XE suite. Unfortunately, the Oracle XE suite has a limit to the allowed size of each
database. In order to be scalable, the project had to switch to the MySQL database suite.
The programs that access the database use the MySQL C++ connector, provided by Oracle,
and the supplied methods and libraries.

4.4 Flow Generator
Chapter 3 discusses the use of the Flow Generator to convert the captured statistical data
into packets and configuration data based on specific flow templates. These flow templates
are designed to create replay flows based on unique characteristics of different types of traf-
fic, such as HTTP and VOIP. This initial version of the replay system does not implement
this design in its entirety. Instead, it implements limited traffic types, which are used to
set a baseline for and show how a statistical modelling replay can be accomplished. More
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precisely, only two templates are initially implemented; one for HTTP (TCP) traffic and
one for VOIP (UDP) traffic. The VOIP template only incorporates the VOIP data packets
and omits the SIP packets. When the number of TCP and UDP flows is determined for the
user-specified repay time, the system implements HTTP flows for each required TCP flow
and VOIP flows for each required UDP flow. The other traffic variables such as inter-packet
spacing, number of packets per flow, and start direction of flows (in or out of the internal
node) are all generated using statistical data from the original trace.

4.5 Limitations
IPv6 Support
Due to time constraints and the fact that most networks have not implemented IPv6, the
system only supports IPv4 traffic during replay. IF the recorded traffic in the pcap file con-
tains IPv6 traffic, those packets will be inserted into the database and organized in the same
manner as the IPv4 traffic. However, IPv6 packets are not included in the configuration file
creation, nor in the traffic replay.

Documentation
As a standalone system, much more thorough technical documentation could be provided
with the system to describe how its functionality. In lieu of proper technical documentation,
this thesis serves to accurately describe all working portions of the system. Along with this
thesis, the system code is well commented and minimal user instructions are provided in
electronic format.

No Deep Packet Inspection
Although the system testing included inspection and comparison of application data for
accuracy verification, this inspection and verification was completed using an external ap-
plication. This system itself contains no deep packet inspection capability to verify the
correctness of application layer data. This limitation is by design since deep packet in-
spection would require not only more compute time, negatively effecting the timing per-
formance, but also an extensive library of all of the most used application layer formats.
This capability was not deemed necessary to proper functioning of the system so it was not
included.
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No Packet Error Detection
Although seriously malformed packet will not be processed by the sniffer, mild packet
errors will be and there is no error detection included to catch this. Once again, the reason
for not including this is to maximize timing performance. Corrupt packets do have the
ability to effect the results of items being tested in the test environment, such as WAN
optimizers, but the risk for corrupted packets in a test environment is low enough to not
include any detection or correction, other than for testing purposes.

The corrupt packets mentioned here refer typically to corruption that either happens during
packet transmission or corruption that was replicated from the original capture. There is
a small chance that corruption could occur when creating the packet binary files or when
re-creating the packet from those binary files, but no such corruption has been witnessed
during the testing of this system.

Two Node Design
Currently, the system is only designed to emulate traffic flowing between two network
nodes. There are certainly environments were traffic can be recorded travelling between
more than two nodes but this support would need to be added to the system. This will be
further discussed in the future work section.

Cannot handle Encrypted Packets
Some traffic capture files may contain encrypted packets. Since the encryption is not known
by the system, these packets are unable to be processed properly and therefore may not be
replayed like the non-encrypted packets. If the encryption only applies to the application
layer data, then the packets will be replayed accurately, but if the transport or lower layers
are encrypted, then the system has no method for examining the network and transport data,
which is essential. Without a comprehensive collection of encrypted packets to evaluate,
it was not possible to accurately determine the behavior of the system when encrypted
packets are encountered.

No Built-in Support for Emulating Network Bandwidth Limitations
Consideration was given to incorporating a network bandwidth emulator into the system,
but MCTSSA eliminated the requirement due to existing capabilities of their test systems.
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Due to the lack of desire for this capability, it was not included in the system and during
replay the system will utilize the full bandwidth of the test environment.

Database/Storage Limitations
Due to the fact that this system loads the packet specifics into a database, it is possible
that certain test environments where this virtual machine (VM) may run could have limited
resources. If the VM is not provided enough storage space for the database and the packet
binary files, then the system will not be able to complete the capture analysis. This scenario
is not tested so the results of this limitation are unknown.

Jumbo Frames
Jumbo frames are Ethernet frames that exceed the standard maximum segment size of 1500
bytes [16]. Due to the rarity of jumbo frames, no support for them was included in the
system. The database field for holding the packet payload is limited to approximately 1500
bytes. The behavior off attempting to insert a jumbo frame into the database is unknown as
it was not tested.

Ethernet Interface Speed
During testing, it was determined that, due to the unique constraints placed on the system
design by the nature of the capture source and location, the speed of the network interface
card (NIC) played a large role in the accuracy of the system timing. Because of this, it is
recommended that the playback system have a faster connection than the original capture
network, if possible. The reason for this, is because the faster connection helps to alleviate
some of the overhead inherent in the emulation system. If a specific network latency is
desired, then it should be implemented using an external system, somewhere in the single
test link while retaining the perceived connection speed of each NIC.

Snap Length
Snap length is a setting within some traffic recording products such as Wireshark that allows
a user to specify a maximum amount of data to record per packet. Essentially, in order to
reduce the size of a trace file, a user can limit how much data is maintained from the
observed packets. Since the payload size as well as the actual payload data is necessary
for the trace-based and statistical playback features of this system, any trace records with a
reduced snap length are not guaranteed to produce accurate results.
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CHAPTER 5:

Testing and Evaluation

This chapter will discuss the specifics of testing the system to include what hardware and
software was used for the system testing, how the testing environment was optimized, how
the tests were conducted, and how the results were gathered. For the actual testing results
see Chapter 6.

5.1 The Test Environment
5.1.1 Testing Machines
The replay system was testing using two standard computers, one desktop and one laptop,
running Ubuntu 14.04 LTS, connected together via Ethernet cable. The laptop used for
the Internal Node possessed an Intel core I7 processor with 8 GB of RAM. The computer
used for the External Node possessed and Intel core I5 processor with 8 GB of RAM. Both
computers were connected via on-board gigabit Ethernet network interface cards (NICs).

Wireshark
The program Wireshark was used on the host machine to capture and record all sent and
received network traffic during the network replay. Wireshark provides not only packet
capturing but also packet and flow analysis tools. All sequencing results were gathered
from analysis of these Wireshark captures. For timing calculations, the Internal Node was
responsible for recording the send and receive times instead of Wireshark. The reason for
this is that the programs were run at real-time process priority, which prevented Wireshark
from performing packet capture, due to its lower process priority. These two recording
techniques were tested against each other, prior to gathering data, to verify that they pro-
duced the same results.

Network Card Settings
It was discovered during testing that the on-board network cards in both laptops were, in
some cases, combining TCP packets together before either sending them over the wire
or before passing them up to the host software, a process called offloading. This caused
not only an inaccurate representation of the captured network traffic, but also false testing
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results due to inaccurate capture data. Since Wireshark was used to determine the accuracy
of the network traffic, it needed the ability to see the traffic exactly as its sent over the wire.
When the NICs on the testing machines were combining the packets, they were doing so
before Wireshark had the chance to capture the original traffic. Essentially, there were cases
where two separate packets were sent over the network, as designed, but the receiving NIC
would combine them into one before passing them to the software. Since Wireshark and
this system are software, they are only able to see the combined packets, thus leading to
what appeared to be flaws in the replay.

In order to fix this packet combining problem, either Wireshark would have to be installed
on a separate machine that is able to passively monitor the network traffic on the wire,
or the NICs had to have this feature disabled. As discussed in the online article “TOE:
TCP Offload Engine on NIC & Packet Capture Misinterpretations” [17], the easiest way
to remove this result was to disable the offloading aspects of each NIC. In order to ensure
that no offloading occurred, TCP segmentation offload (tso), generic segmentation offload
(gso) and generic receive offload (gro) were all disabled on both NICs.

Optimization
Although both test machines were multi-core machines with large amounts of RAM, they
still had the potential to be slowed down by external sources. For this reason steps were
taken to optimize the machine by minimizing loads external to the system being tested. The
steps taken to optimize each test machine include the following:

1. The laptop was plugged into external power to eliminate power saving features.
2. All non-essential processes were terminated.
3. WIFI was disabled.
4. All programs were run from the command line vice from an Interactive Development

Environment.
5. Real-time updates on Wireshark were disabled.
6. All threads were run at real-time scheduling priority.

5.2 Packet Accuracy
In order to determine the accuracy of the packets after trace-based replay, the Wireshark
capture of the test was compared side-by-side with the original capture. Since Wireshark is
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able to inspect all fields of the packets to include some common or text-based application
payloads, this side-by-side comparison proved sufficient for ensuring packet accuracy.

5.2.1 Packet Encryption
The one area where Wireshark was unable to determine packet accuracy was when applica-
tion layer encrypted packets were used. Since it is either very impractical or impossible to
decode these packets, there is no way to check the accuracy of the encrypted data. It was as-
sumed during testing, however, that if the unencrypted packets were accurately reproduced,
then the encrypted packets were as well.

5.3 Sequencing Accuracy
The accuracy of packet sequencing was also tested using side-by-side comparisons with
Wireshark. Both the original and test captures were compared, line-by-line on moderately-
sized samples in order to verify that the exact order of packets was maintained throughout
the entire replay.

5.4 Timing Accuracy
Multiple, various sized capture files were run several times each. The times were compared
to the original capture time, place into spreadsheets and plotted on line charts. Each capture
begins at time 0 and each individual packet time is compared to the corresponding original
packet then plotted alongside each other.

5.5 Statistical Testing
Due to the fact that the statistical testing does not contain an original capture file, the
test capture on Wireshark was compared to the statistical configuration file in order to
determine accuracy of sequencing, timing, and packet details. Since there are no original
packets with the statistical replay, packet accuracy was only performed in terms of assuring
no malformations occurred and that certain characteristics such as socket pair and payload
size matched the replay specifications.
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CHAPTER 6:

Validation

System validation requires the examination of several areas of performance. This section
will validate the degree to which packet timing, packet accuracy, and TCP sequencing was
maintained during trace-based replays. Additionally, this section will define TCP seman-
tics in terms of sequencing rules and show that this implementation does not violate those
rules under specific replay environments. Lastly, the statistical replay will be shown to pro-
duce an accurate statistical model of the original capture file without utilizing any original
packets.

6.1 Sequencing
For this network replay system, maintaining correct TCP semantics only applies when
the user chooses sequencing accuracy as the replay priority. When timing is chosen as
a priority, the latency assumptions discussed here are intentionally changed or ignored,
therefore no guarantee of correct packet ordering is provided.

The following pages will formally define correct TCP semantics, explain the traffic replay
algorithm under scrutiny, and prove that this algorithm will maintain these semantics during
network replay by means of retaining the original packet ordering at the recorded node. To
begin, we will define the variables that will be used in the proof, discuss some key TCP
fundamentals, and define correct TCP semantics.

6.1.1 Notation
Before describing the replay system and defining correct TCP semantics, some common
symbols and variables needs to be defined. Table 6.1 provides a list of all symbols and
variables used throughout this paper.

6.1.2 The Replay Algorithm
For the purposes of this section, the network traffic replay scheme discussed in this thesis
will be called Time-Ordered Replay. In Time-Ordered Replay, there are two replay nodes,
an internal node and an external node. The original network trace is recorded at a point
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Table 6.1: Notation
Expression Definition
Ti(x),Te(x),T (x) Original recorded time of packet x at the int, ext, or both

nodes
Ti′(x),Te′(x),T ′(x) Replay recorded time of packet x at the int, ext, or both

nodes
Px,Qx,Rx,Sx Packets within the same TCP flow at node x
P.seq Sequence number of packet P
P.ack Acknowledgement of packet P
P.dir Direction of packet P (send or receive)
P.len Length of packet P
P. f lag The flag setting for the packet P (ACK, SYN, SYN-ACK,

FIN, RST)
ti, te Inter-Packet spacing at the internal, external node
d Packet latency (positive value)
P < Q P timestamp is before Q timestamp

corresponding to the internal node. The other end of the trace is emulated by the external
node. Each node sends packets according to an ordered list of packets. The following
details define how the ordered lists are generated:

1. Each node must complete the sending or receiving of all previous packets in the list
in order (no skipped packets)

2. Internal node times are unchanged from the original trace
3. External node times are adjusted by a measured latency amount

• ∀Te(P) s.t. P.dir = RECV,Te(P) = Ti(P)+d

• ∀Te(P) s.t. P.dir = SEND,Te(P) = Ti(P)−d

4. External node times are rearranged after time adjustments in ascending time order
• ∀P,Q : i f (Te(P)< Te(Q)) then P < Q

6.1.3 Correct TCP Semantics
A TCP interaction or flow can be imagined as a two state finite state machine, where the
transitions between the state machines are accomplished through the sending of TCP pack-
ets (messages) from one to the other. In many cases, the transition from state one to state
two first requires a transition from state two to state one. or vice versa. As will be defined
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shortly, these transitions rely on properties of the previous transitions such as sequence and
acknowledgement numbers. In many, but not all, cases, the order of these transitions (the
messages) is vital to the correct operation of the finite state machine. This required ordering
of transitions defines the specifics of TCP semantics.

Furthermore, maintaining correct TCP semantics means that a TCP flow follows the order-
ing constraints required for correct operation of the TCP finite state machine. The focus
here is not on the accuracy of the messages or message properties, but on the order in which
these messages occur. Before these constraints can be formally defined, some background
into TCP structure must be covered. This background data is defined in the following
section.

TCP Message Properties

1. Every octet of data sent over a TCP connection has a sequence number:
∀P : P.seq 6= null

2. Sequence numbers at each node do not increase after sending an ACK packet:
∀P,Q s.t. P.dir = Q.dir : (T (P) < T (Q)) ∧ (P.len = 0) ∧ (P. f lag = ACK) =⇒
(P.seq = Q.seq)

3. Length of data packets added to the packet sequence number = next packet sequence
number:
∀P : (P.len > 0) =⇒ ((P+1).seq = (P.seq+P.len))

4. Acknowledgement numbers for ACK packets = sequence number + length of the
packet being ACK’d:
∀P : (P. f lag = ACK) =⇒ (P.ack = Q.seq+Q.len),

where P is the ACK for Q
5. Acknowledgement numbers for non ACK packets from a node do not increase from

the previous packet at that node:
∀P : (P. f lags 6= ACK) =⇒ (P.ack = (P−1).ack)

6. Payload length of ACK, SYN, SYN-ACK, and FIN only packets is 0:
∀P : (P. f lag = ACK ∨ P. f lag = SY N ∨ P. f lag = SY N − ACK ∨ P. f lag = FIN ∨
P. f lag = RST ) =⇒
(P.len = 0)

7. TCP flows are defined by socket pair and sequence number windows
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8. There are no TCP ordering semantics between different TCP flows.

As previously mentioned, maintaining correct TCP semantics requires the adherence to
specific ordering constraints. TCP flow with correct semantics does not violate the four
constraints listed below.

TCP Constraints

1. Acknowledgements for data packets must arrive after the data packet is sent
∀P : (P. f lag = ACK∨P. f lag = SACK) =⇒ ∃Q s.t.
Q.len > 0∧P.ack = Q.seq+Q.len,T (P)> T (Q)

2. A node can receive messages but not send messages with data after sending an FIN
message
∀P : (P. f lags = FIN∧P.dir = SEND) =⇒ @Q s.t.
Q.len > 0∧Q.dir = SEND∧T (Q)> T (P)

3. No data or ACK can be sent from either node after sending or receiving RESET
∀P : (P. f lags = RST ) =⇒ @Q s.t. Ti(Q)> Ti(P)

unless Q.dir = RECV ∧Te(Q)< Te(P)

4. 3-way handshake contains 3 messages that must be in order
∃P,Q,R,S s.t. (P. f lag= SY N)∧(Q. f lag= SY N−ACK)∧(R. f lag=ACK)∧(Q.ack=

P.seq+1)∧ (R.ack = Q.seq+1)∧ (S.len > 0)∧ (T (S)> T (R)> T (Q)> T (P))

Notes

1. All other packets not covered in one of the above cases may occur in any order within
the life of the TCP flow.

2. This ability to be out of order does not take into account any application layer con-
straints so it is plausible to meet TCP semantics while violating application layer se-
mantics. For example, an out of order HTTP flow could meet TCP semantics while
still sending the HTTP data before the get message was sent.

3. Retransmissions can occur, and there are no requirements, beyond those already
stated, that the packets be in any order.
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6.1.4 Results
Theorem 1 Given an original capture and a replay system with no packet loss and con-

stant packet transmission and processing delay, the Time-Ordered Replay algorithm will

maintain the packet ordering of the original capture as observed at the internal node.

Proof
This proof will address correct TCP semantics by showing that the ordering of the origi-
nal trace is maintained during replay when viewed at the internal node: ∀ arbitrary P,Q :
(Ti(P)< Ti(Q)) =⇒ (Ti′(P)< Ti′(Q))

CASE 1: ti≥ 2d,Pi.dir = SEND,Qi.dir = RECV

Figure 6.1: Case 1: ti≥ 2d,Pi.dir = SEND,Qi.dir = RECV

1. Te(Q) = Ti(Q)−d (defined timing adjustment)
2. Te(P) = Ti(P)+d (defined timing adjustment)
3. Ti(Q)−Ti(P) = 2d (case assumption)
4. Ti(Q)−Ti(P) = (Te(Q)+ d)− (Te(P)− d) = Te(Q)−Te(P)+ 2d (substitution of 1
and 2 into 3)
5. Te(Q)−Te(P)+2d ≥ 2d (simplification)
6. Te(Q)≥ Te(P) (simplification)
When the adjusted times of two packets are equal or retain the same hierarchy, this
original ordering is maintained during replay.
7. Therefore, Te′(Q)> Te′(P) (no order change, so Q will be sent after P arrives)
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8. Ti′(Q) = Te′(Q)+d for some positive value d (definition)
9. Ti′(Q)> Te′(Q) (since d is positive)
10. Ti′(Q)> Te′(Q)> Te′(P) (7 and 9)
11. SoTi′(Q)> Te′(P) (simplification)
12. Te′(P) = Ti′(P)+d (definition)
13. Therefore Ti′(Q)> Ti′(P)+d > Ti′(P),∃d (substitution)

CASE 2: ti < 2d,Pi.dir = SEND,Qi.dir = RECV

1. Te(Q) = Ti(Q)−d (defined timing adjustment)

Figure 6.2: Case 2: ti < 2d,Pi.dir = SEND,Qi.dir = RECV

2. Te(P) = Ti(P)+d (defined timing adjustment)
3. Ti(Q)−Ti(P)< 2d (case assumption)
4. Ti(Q)−Ti(P) = (Te(Q)+ d)− (Te(P)− d) = Te(Q)−Te(P)+ 2d (substitution of 1
and 2 into 3)
5. Te(Q)−Te(P)+2d < 2d (simplification)
6. Te(Q)−Te(P)< 0 (simplification)
7. Te(Q)< Te(P) (order is switched)
8. Te(P)−Te(Q) = te (definition)
When the times of P and Q are adjusted so that Q is now earlier than P, the algorithm
reorders them.
9. Therefore, Te′(Q)< Te′(P) (by ordering constraint)
10. Ti′(Q) = Te′(Q)+d (definition)
11. Te′(Q) = Te′(P)− te (definition of te)
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12. Ti′(Q) = Te′(P)− te+d (substitution of 10 and 11)
13. Te′(P) = Ti′(P)+d (definition)
14. Ti′(Q) = (Ti′(P)+d)− te+d (substitution of 12 and 13)
15. Ti′(Q) = Ti′(P)− te+2d (simplification)
16. So when te < 2d,Ti′(Q)> Ti′(P) : (simplification)
We must now show: If ti < 2d, then te < 2d

17. Ti(Q)−Ti(P)−2d =−te (from 4 and 8)
18. Ti(Q)˘Ti(P) = ti (definition)
19. ti < 2d (Case assumption)
20. ti−2d =−te (substitution of 18 and 19 into 17)
21. te = 2d− ti (simplification)
22. So, te < 2d,∃positive ti

23. Therefore, since te < 2d,Ti′(Q)> Ti′(P) (from 16)

CASE 3: Pi.dir = RECV,Qi.dir = SEND

Trivially:

Figure 6.3: Case 3: Pi.dir = RECV,Qi.dir = SEND

1. T (Q)> T (P) (given)
2. Therefore, Ti′(Q)> Ti′(P) (algorithm ordering constraint)

CASE 4: Pi.dir = SEND∧Qi.dir = SEND∧Ti(Q)> Ti(P)

Trivially:
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Figure 6.4: Case 4: Pi.dir = SEND∧Qi.dir = SEND∧Ti(Q)> Ti(P)

Ti(Q)> Ti(P) (given)
So, Qi > Pi (ordering at internal node matches original capture)
Therefore, Ti′(Q)> Ti′(P) (ordering constraint)

CASE 5: Pe.dir = RECV ∧Qe.dir = RECV ∧Ti(Q)> Ti(P)

Figure 6.5: Case 5: Pe.dir = RECV ∧Qe.dir = RECV ∧Ti(Q)> Ti(P)

1. Te(P) = Ti(P)˘d (defined timing constraint)
2. Te(Q) = Ti(Q)˘d (defined timing constraint)
3. Ti(P) = Te(P)+d (Algorithm definition)
4. Ti(Q) = Te(Q)+d (Algorithm definition)
5. Ti(Q)> Ti(P) (case assumption)
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6. Te(P)+d > Te(Q)+d (substitution of 1, 2 and 5)
7. Te(P)> Te(Q) (simplification)
8. i f (Te(Q)> Te(P)) then Te′(Q)> Te′(P) (ordering constraint)
9. Ti′(P) = Te′(P)+d (definition)
10. Ti′(Q) = Te′(Q)+d (definition)
11. So Ti′(P)−d > Ti′(Q)−d (substitution of 9 and 10 into 8)
12. Therefore, Ti′(P)> Ti′(Q) (substitution)

It has now been shown that no matter the sequence of packet direction and timing and given
a trace that meets the original assumptions, Time-Ordered Replay maintains the ordering
of the original trace as viewed from the internal node. Q.E.D.

Corollary 1 With a given replay algorithm that maintains the ordering of the original trace

and an original trace maintains correct TCP semantics, the replay of this trace also main-

tains correct TCP semantics as viewed at the internal node. Since Time-Ordered Replay

has been shown to maintain this original ordering within the given constraints, then it is

also shown to maintain correct TCP semantics.

6.1.5 Conclusions
Given the provided definition of TCP semantics and the assumption that the original capture
maintains these semantics, this proof as shown that no matter the sequence of packets, the
replay algorithm Time-Ordered Replay, with an accurately measured and constant latency,
maintains these semantics by maintaining the original order of captured packets as seen at
the internal node.

Furthermore, this theorem can be expanded to cover a more general case by relaxing some
of the constraints. More specifically, by relaxing the requirement for a constant latency
value d, further analysis can show that original trace ordering will still be maintained with
a variable latency, as long as that latency is within specific bounds. These bounds could
be formally derived to provide upper and lower bounds and more accurately model a real
network environment where latency is not typically constant.
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Latency Measurements
The latency measurements for these tests were performed manually using ping requests
between the two nodes. The average of 20 ping results was used to determine the RTT of
the test network. The latency value used for the test is half of this measured RTT value. The
manual estimation of latency is simple and allows adaptability to various test networks.

6.2 Timing
Reproducing timing proved to be the most arduous task during system implementation.
Every aspect of the replay program was optimized for performance by performing as much
pre-processing as possible and eliminating unnecessary work such as extra data copying.
Despite these optimizations, exactly matching the original packets times while maintaining
packet sequencing was not achieved for high volume capture files.

6.2.1 Replay Timing Accuracy
Several capture files were used in validating timing requirements but only a few exam-
ples will be presented here to demonstrate the result accuracy. The implementation led to
three major replay timing environments, each with varying degrees of sequencing accu-
racy. As described in Section 6.1, correct sequencing can only be validated for the replay
environment that uses an accurate measurement of system latency. However, if accurate
sequencing is not a priority for the user, then two improved timing environments can be
used.

The first test involved a single flow with large packet sizes and a high transfer rate. As
can be seen in Figure 6.6, the replay environment with the worst timing accuracy was
using the measured latency without adjustment. When the measured latency is doubled,
the performance improves remarkably but still is not able to keep up with the original trace.
When accurate sequencing is at a minimum and the replay sends packets purely based on
send times, then the timing is able to be matched almost exactly.

Latency Adjustments
The decision to adjust the latency during testing was to help validate the accuracy of the
measured latency as well as to evaluate the effect of a larger latency value on timing ac-
curacy. As was discussed in Section 6.1, doubling the latency does not facilitate retain-
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Figure 6.6: Single Flow Throughput

ing proper sequencing. Therefore, when running the replay at larger latency values, it is
expected that the packet sequencing would be less like the original than when using the
measured latency. This expected result is exactly what occurred, although the degree to
which it varies depends on the capture itself. One simple example is used in this thesis to
demonstrate the performance differences. The packet sequencing accuracy, measured by
comparing the replay and original captures packet for packet, are summarized in Table 6.2.
When evaluating the table, it is necessary to remember that much of the packet reordering
is expected, given that sequencing between flows (inter-flow sequencing) does not violate
the TCP semantics, only specific cases on intra-flow reordering.

As can be seen in Figure 6.6 and Table 6.2, increasing the latency above the measured
amount, increases the timing accuracy but decreases the sequencing accuracy, although not
to a large degree. In order not to provide too many variations to user playback options,
a subset of these latency values will be used in the final implementation. The original
latency will obviously be used to ensure proper TCP sequencing, sending packets on a
time schedule only will ensure the most accurate timing, and utilizing double the measured
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Table 6.2: Sequencing Comparison Between Latency Values (Measured Latency of 140 Msec on
Multi-Flow Capture)

Latency Value Percent Match
100 Msec 62.04%
140 Msec 62.67%
200 Msec 61.40%
280 Msec 58.85%
360 Msec 58.85%

latency will provide a middle ground of performance.

6.2.2 Timing Validation Results
Along with the single flow example presented in Figure 6.6, the other validation measure-
ments presented in this paper include a 7,000+ packet, multi-flow capture, Figure 6.7, and
a 95,000+ packet, multi-flow capture, Figures 6.8 and 6.9. The latter example is from a
capture file provided from MCTSSA and recorded from an actual USMC network.

The original capture for this large test contained 1.6 million packets and covered a 24 hour
period. Approximately the first 100,000 packets were pulled from the original capture and
replayed in order to provide a stress test for the system. The replay lasted approximately
60 minutes and was performed with the sequencing priority option. Figures 6.8 and 6.9
are random samples from the capture that illustrate that even the poorest performing option
in terms of timing was able to sufficiently match the original trace. The reason this trace
was able to match the timing but the previous two examples (Figures 6.6 and 6.7) were not
is simply due to the difference in the volume of traffic. This large capture was based on
a satellite connection with a much lower bandwidth than the previous captures. With the
timing match of the sequence priority replay, the double-latency and time-based replays are
not displayed on this data set as they are on the previous examples.

6.3 Packet Accuracy
Utilizing Wireshark, several hundred packets over multiple test replays were examined by
hand to ensure packet accuracy. As expected, not a single packet was found to be altered
from the original trace with the exception of the planned and necessary alterations to the
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Figure 6.7: Multi-Flow Throughput

link-layer. This is not a surprising result given that each packet is transferred intact from
the original trace file to the replay program in the form of a binary file.

In addition to the visual comparison, a small validation program was created that compared
original and replay captures, packet by packet, and verified certain values remained the
same. This tool utilized early versions of the replay program that did not allow for any
resequencing of packets, guaranteeing that each packet was compared to its appropriate
counterpart. Although not a completely extensive accuracy test, this simple tool examined
the values listed in Table 6.3 for each packet and verified that the corresponding replay
packet matched the value exactly.

6.4 Statistical Modelling
In order to evaluate the statistical modelling, a simple python script was written to read
each of the generated configuration files, compute the necessary statistics for each file, and
compare the data from both files. The script calculates the number of packets, total flows,
TCP flows, UDP flows, and the number of seconds in the replay. Since the statistical model
can last any user-defined number of minutes, the ratio of this duration against the original
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Figure 6.8: Large Test Sample 1

Table 6.3: Accuracy Evaluation Values For Automated Test

Source IP Address
Destination IP Address
Source Port Number
Destination Port Number
Packet Size
Payload (Application Layer) Size

trace duration becomes the basis for measuring the effectiveness of the generated model,
for the majority of fields. By taking the ratio of each statistical value to the original value
and comparing that to the duration ratio, the effectiveness of packet and flow generation
can show a rough correlation.

Tables 6.4 and 6.5 show two separate traces that were used to generate and compare sta-
tistical values. The first two columns contain the measured values for the capture and the
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Figure 6.9: Large Test Sample 2

statistical model. The last column in each table is the ratio of this statistical model value
against the original capture value. The first row of each table displays the duration ratio
that is used as the baseline for comparison and the remaining columns show how the ratios
compare to the baseline. For example, if the replay time is 17 times longer than the orig-
inal trace, then there should be approximately 17 times more total flows, TCP flows, and
UDP flows. The provided tables show that this rough correlation does exist in this system’s
replay mechanism. The variations of the ratios from the duration ratio show the statistical
model nature of the replay.

The replay is not designed to be a copy of the original trace multiplied by 17 (leveraging
the previous example). Instead, this ratio is used as the starting point from which the
statistical model is generated, so variations from the duration ratio are not only expected,
but purposely implemented.
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For the last two measured values, inter-packet spacing and average number of packets per
flow, the duration scaling factor was not used. These values were recreated using statis-
tical modelling without the ratio scaling factor of the previous values so the ratio is not
applicable here.

Table 6.4: Statistical Ratios of Experiment 1

Category Stat Value Orig Value Ratio
Duration 311.16668 17.114 18.18
Number of Packets 17712 1173 15.10
Total Flows 3220 185 17.41
TCP Flows 923 56 16.48
UDP Flows 2297 131 17.53
Inter-Packet Spacing 0.376782 0.187281 N/A
Avg Packets Per Flow 5.4 6.3 N/A

Table 6.5: Statistical Ratios of Experiment 2

Category Stat Value Orig Value Ratio
Duration 298.978 14.578 20.51
Number of Packets 125994 7218 17.46
Total Flows 10118 614 16.48
TCP Flows 2939 264 11.13
UDP Flows 7179 350 20.51
Inter-Packet Spacing 0.323851 0.052808 N/A
Avg Packets Per Flow 9.9 11.7 N/A
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CHAPTER 7:

Conclusion and Future Work

The goal of this thesis was to create a network traffic replay system that incorporates both
trace-based replay as well as statistical modelling replay in a non-proprietary, plug-and-
play environment. The system designed here provides the ability to maintain TCP seman-
tics (to be stateful) and recreate initial traffic loads.

Additionally, the system accurately creates an accurate statistical representation of the orig-
inal trace that can be used to provide a representative replay over a user-defined amount of
time. By capturing the certain statistical values from the original trace, the system creates
the model to represent the numbers and types of flows, the commonly used ports within
those flows, as well as the inter-packet and inter-flow spacing. All of this is accomplished
prior to playback in order not to effect replay performance.

The system in not without limitations, though. The increased overhead of handling op-
erating system tasks at the application layer proved to be a challenge when attempting to
match the timing of high density captures. In order to accommodate this short-coming, the
system provides the user preference of guaranteeing TCP semantics and packet ordering
that more closely resembles the original trace, or more accurate timing at the expense of
packet ordering and possibly TCP semantics.

7.1 Future Work
The system developed meets the basic requirements put forth by MCTSSA, but there are
several areas where expansion would enhance the performance or the possible applications
of the finished system. Those enhancements are discussed in the following sections.

7.1.1 The Interface
Graphical user interfaces (GUI), if designed well, are generally more intuitive than com-
mand prompt interfaces, especially when users are unfamiliar with the system. By design-
ing the user interaction into a GUI vice the command line, the operation of the system will
be much more intuitive as well as less prone to errors created through incorrect or incom-
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plete user input. The desired result of creating a front end GUI would be increased ease of
use and decreased implementation time.

This system will benefit greatly from a single graphical front end. The front end would
simply link all programs of the system together into a single user interface. From this
graphical front end, the user can operate all portion of the replay system as well as configure
all user settings and enter all user data. The GUI would prevent bad user input into the
programs as well as make the system much more intuitive.

7.1.2 Addition of More Nodes
The current implementation only accommodates a network with one internal and one exter-
nal node. In order to increase the usability of the system, it should be extended to support
one internal node and multiple external nodes. This could potentially be accomplished us-
ing the same two computers by configuring one of the nodes to emulate multiple nodes.
Another possible solution would simply be to use computers with multiple NICs and run
multiple instances of the replay system simultaneously. This latter solution would require
some method for synchronizing the two replay instances together, but may require less
modification to the original code.

7.1.3 Add IPv6 Support
The system only partially supports the inclusion of IPv6. The portion that supports IPv6
is Segment 1 in Chapter 3. True IPv6 packets, not IPv6 encapsulated packets, are all
processed and inserted into the database. Once the database is properly populated, the IPv6
packet support is complete and the remaining system programs simply ignore the IPv6
packets, if any, in the database.

This expansion would require inclusion of the IPv6 packets in the configuration file as well
as the replay engine. This would also require an additional user option to choose between
an IPv4, IPv6, or a combined replay environment, since they may both exist on the network,
even without encapsulation. IPv6 encapsulation is discussed in Section 7.1.4.

7.1.4 Add IPv6 Encapsulation Support
The database population program currently expects the TCP or UDP layer to come imme-
diately after the IP layer. In IPv6 encapsulated packets, the IPv6 layer is immediately on
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top of the IPv4 layer, with the TCP or UDP layer on top of the IPv6 layer. Access to the
TCP/UDP header is mandatory because it provides necessary replay information such as
port numbers and sizes. In order to accommodate these encapsulated packets, the Segment
1 programs need to be expanded to recognize this extra layer in order to find the dislocated
transport layer and the required data.

7.1.5 Database Efficiency Enhancements
The database population procedure inserts a single packet at a time into the database. This
single insert requires extra time consuming steps such as erasing server-side cache for
each insert. By utilizing batch inserts where many inserts are completed at once, many
of these steps only need to occure once for each batch instead of once for each packet.
Unfortunately, the current implementation of the C++ MySQL API utilized in this program
does not support batch processing [18].

7.1.6 File I/O Efficiency Enhancements
The current implementation of the system performs batch processing of binary files when
creating the packets for replay. This batch processing is rudimentary and may not be suf-
ficient during very large and high volume replay scenarios. Further refinement, such as
combining multiple packets into each file, could help prevent this potential bottleneck.

7.1.7 Beyond TCP and UDP
TCP and UDP traffic encompass the majority of important network traffic in modern net-
works. Therefore, this system was designed to only support TCP and UDP. Despite this,
system users might desire the ability to reproduce other forms of traffic to possibly include
ICMP and proprietary protocols. In order to support message types and protocols other
than TCP and UDP, both Segment 1 and Segment 2 programs will require updating as the
current implementation simply ignores those packets when encountered.

7.1.8 Expand Traffic Templates
The current system implementation only includes two traffic templates, one for HTTP(TCP)
traffic, and one for VOIP(UDP) traffic. In order to significantly enhance the statistical mod-
elling of the system, inclusion of more templates is required. This should begin with the
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most common traffic types but can be tailored for specific needs that utilize unique traffic
types.

7.1.9 Further Statistical Analysis
It is difficult to argue against the fact that an entire thesis could be completed on statistical
modelling of network traffic. This thesis only presents a very basic demonstration of how
statistical replay can be achieved within the frameworks of this replay system. Along with
expanding the traffic templates, some of the other network traffic properties that should be
included in future drafts include inter-flow spacing and distribution of flows at given time
periods within the capture instead of averages throughout the whole capture. An example
of the latter point is being able to identify when a capture contains the majority of flows at
the beginning or end of the capture period, as opposed to evenly distributed throughout.

7.2 Conclusion
The initial goal of attempting to create a network traffic replay system for both trace-based
and statistical replay was met. A compromise was required between timing and sequencing
performance, due to the higher overhead of processing all packets at the application layer.
Despite this, both timing and sequencing goals were able to be met, just not simultaneously
for traces that contain a high throughput of traffic.

The work completed in this thesis provide a viable product for performing network traffic
replay utilizing non-proprietary software encased inside an easily implemented virtual ma-
chine. The original requirements placed by MCTSSA have been met and with some of the
previously stated enhancements, the usefulness and performance of the system can be even
further enhanced.

58



APPENDIX: Source Code

Source code is maintained at the following repository:

https://github.com/homerstf/TrafficReplay
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